Data Science Texts

Discover what you don't know, and attack your weaknesses!

NB: We may earn a commission if you buy something via an affiliate link.

Advanced Time Series Analysis

Strongly Recommended Prerequisites

Recommended Prerequisites

Last Updated: 8/29/2021

Advanced time series analysis concerns relaxing the assumptions of basic time series analysis, especially those of linearity and Gaussianity.

Recommended Books

  1. Nonlinear Time Series

    Randal Douc, Eric Moulines, And David S. Stoffer

    Check it out on Amazon!

    Key Features

    • In-text exercises
    • Some code snippets
    • Supporting R package
    • Errata


    This book is not for the faint of heart, but if you don't believe the time series you are working with satisfies the conventional assumptions, you will likely benefit from reading it. It's divided into three parts: a review of basic linear time series and some small extensions, a section on Markov models, and a section on state space and hidden Markov models. The sections don't depend very much on each other, which is nice because we think most people will be most interested in the last one. The included R package is a useful addition, but we really wish some exercise solutions were available since this book is not sufficiently popular to find them easily on the web.